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The vibrations and damping characteristics of an annular plate with constrained layer
damping (CLD) treatment subject to a traveling spring–mass–damper (SMD) are
investigated. The equations of the CLD-treated plate are first derived from the energy
principle. These equations are simplified via the Donnell–Mushtari–Vlasov assumptions.
The response equations are eventually uncoupled for each mode and are in terms of a
single-degree-of-freedom (s.d.o.f.) linear oscillator with hysteretic damping. The receptance
method follows to joint the plate and the SMD, and the resulting change of natural
frequencies and damping ratios are investigated. Individual effects due to the inertia and
the stiffness are illustrated as well. The results shows that the damping ratios resulted from
the viscoelastic core are more significant than that from the viscous damper. In addition,
there exists a best design on the thickness of the viscoelastic material core to have the
maximum damping ratios. The results also show that the attachment of SMD bifurcated
the plate’s natural frequencies for every mode but n ¼ 0: The bifurcation becomes more
obvious with the rotational speed. These results provide useful information for vibration
suppression in engineering design.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Due to the increasing demand on efficiency and reliability in mechanical systems, the
control on structural vibration has become an important subject in the field of mechanical
engineering design. Both active and passive suppression techniques can be utilized to
reduce vibration and noise in structures. Constrained layer damping (CLD) treatment has
been proven to be an effective approach in suppressing excessive structural vibration to
prevent structural damages or failures from operating in a dynamic environment. The
damping treatment on the guiding vane of the inlet in the TF-30-P100 jet engine was one
of the successful examples [1, 2]. The pioneering works about CLD on beams can be traced
to DiTaranto [3] and Mead and Markus [4] for the axial and the bending vibration of
beams. Since then, many papers were reported in this area for different structural
elements, e.g., beams [5, 6], plates [7–9], shells [10–14], and rings [15]. Lately, Hu and
Huang [16] developed a general theory for the constrained layer damping treatment, which
can be applied to any other commonly encountered geometry.
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The responses of a circular plate subjected to traveling forces have been studied for
years because of its importance to applications, e.g., circular saw, turbine rotor, and
computer hard disk. However, the application of constrained layer damping treatment to
circular plate was rather limited. Mirza and Singh [17] investigated the axisymmetric
vibration of a circular sandwich plate in which the thick core layer was a low density and
low strength material such as aluminum honeycomb. Roy and Ganesan [18] developed a
finite element model for vibration and damping analysis of circular plates with constrained
damping layer treatment. Both of the mentioned papers focused on the cases where the
VEM layer was thicker than face layers.

The system considered herein consists of a three-layer annular plate with a viscoelastic
core subjected to a spring–mass–dashpot (SMD) system rotating at constant angular
velocity. Similar researches are as follows: Iwan and Stahl [19] analyzed a rigid disk of
two/three degrees of freedom with a moving mass load. Hutton et al. [20] investigated the
vibrations of a spinning saw blade with elastic supports. Shen and Mote Jr. [21] let the
SMD circumnavigate the plate and discussed the influence of SMD parameters on system
stability. Shen [22] demonstrated that axisymmetric plate damping will suppress the
instability of plate/slider systems and the plate is modelled as Kelvin viscoelasticity of the
circular plate. An important feature of the aforementioned work was the assumption that
the SMD is treated as external loads. Huang and Hsu [23] employed the receptance
method to solve for the modes of a spinning disk with point supports and obtained similar
results with them.

The theoretical analysis begins with the derivation of governing equations for the three-
layered annular plate. These equations are furthered reduced to three by eliminating the
constraining layer displacements. The assumed-mode method is then employed to
discretize the three equations. Next the receptance method is applied to combine the CLD
plate and the rotating SMD system. The purpose of this study is to investigate the effect of
the viscoelastic material (VEM) core and the dashpot on damping and frequencies of the
CLD plate. In addition, the influence of the inertia and stiffness of the SMD on the
dynamic response of the combined system are also examined.

2. EQUATIONS OF MOTION

Consider a physical system (Figure 1), consisting of a three-layer, annular plate with a
viscoelastic core subjected to a linear SMD rotating at a constant speed O along a circle
r ¼ r0: The host plate and the constraining layer (CL) are assumed to be homogenous,
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Figure 1. A schematic diagram of a CLD plate subject to an SMD system.
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isotropic and elastic. The core made of VEM is the major damping mechanism for
vibration suppression of the structure. The SMD- and CLD-treated plate are assumed to
be in contact all the times. In the following, the plate and the SMD are treated as
subsystems and the receptance method [24] is applied to join the subsystems.

First, the governing equations of a CLD-treated plate clamped inside and free outside
subjected to a harmonic load traveling in circumferential direction are derived. The
symbols h; r;E; and m denote thickness, density, Young’s modulus, and the Poisson ratio
respectively. The superscripts p; c; and n are designated for the plate, the CL, and the VEM
respectively. Based on the thin shell theory, Love’s assumptions, and the no-slip constrains
(displacement continuity) between layers, i.e.,
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the equations of motion and the boundary conditions, are derived via Hamilton’s
principle. Note that bc

j and bp
j in equation (1) are the rotation angles, expressed in

Appendix A. The Donnell–Mushtari–Vlasov assumptions [24] further simplify the
equations to be
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where Qc
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The expressions of membrane forces N’s, bending moments M’s, and shear force
resultants Q’s are given in Appendix A, equations (A2–A6). The boundary conditions for



S.-C. YU AND S.-C. HUANG1184
an r=constant edge are derived to be
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Similarly, the boundary conditions for a y=constant are
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Neglecting the in-plane normal strains of the VEM layer, this results in the constraining
layer displacements, uc

r and uc
y; in the above equations being eliminated. Subsequently,

the number of equations reduces to three, and are in terms of plate displacements,
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where the coefficients ca; cb; . . . ; cn and da; db; . . . ; dn are shown in Appendix A, (A7–A8).
A unit harmonic, traveling point load can be expressed as

qc
zðr; y; tÞ ¼ 1

r
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where ðr0;OtÞ locates the loading position and o is the excitation frequency. The response
of a rotating disk due to a traveling point load such as equation (9) is of practical interest.
For example, modelling a memory disk drive in a computer system or a rotating slider
bearing system enables the full comprehension of its dynamic behaviors and provides some
design consideration.

Due to the complexity of the equations, the assumed modes method is hence applied.
The displacement functions are assumed to be
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where amnðtÞ; cmnðtÞ; jmnðtÞ; fmnðtÞ; zmnðtÞ; and bmnðtÞ are the generalized co-ordinates, n

and m are the circumferential and the radial wave numbers, respectively; l ¼ a � b; RmnðrÞ
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is chosen as the polynomial functions in the present cases, i.e.,

RmnðrÞ ¼ Pmnðr � bÞmþ2 þ Qmnðr � bÞmþ3 þ Rmnðr � bÞmþ4; ð11Þ
Pmn; Qmn; and Rmn are coefficients chosen such that equation (11) satisfies the boundary
equations. Note that in equations (10) and (11), m (nodal circle number) is assumed to
range from zero to infinite. Yet, for most of the vibration cases the modes associated with
an m number larger than 0, i.e., m51; are just slightly excited compared to m ¼ 0 modes
[20]. To save computation time, only the m ¼ 0 terms are considered in the following
analyses.

Substituting equation (10) into equations (6)–(8) and utilizing the orthogonality of
trigonometric functions, a set of discretized equations for each n number is obtained:
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Xan ¼ fanðtÞ;jnðtÞ; znðtÞgT; Xbn ¼ fcnðtÞ;fnðtÞ; bnðtÞg
T; ð14Þ

Qan ¼ f0; 0; q1ðtÞgT; Qbn ¼ f0; 0; q2ðtÞgT: ð15Þ
Note that the expressions of mn;kijðnÞ; and qi are given in detail in Appendix A, equations
(A9–A12).

Since the in-plane inertia have been neglected, the first two equations in the matrix
equations (12a,b) are in fact the static equilibrium equations. Therefore, equations (12a,b)
can be rearranged such that the dynamic behavior is merely in terms of the transverse
displacement as shown below,
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where
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: ð17Þ

To study the harmonic steady state response, the properties of VEM, in a usual manner,
are assumed to be

Gv ¼ Gv
0ð1 þ iZÞ; ð18Þ

where Gv
0 is the storage modulus and Z is the loss factor. The plate’s response yields via

superimposing each n’s modal response. The eigenvalue of equation (16) can be expressed
as

l ¼ d þ ie: ð19Þ
The real part of l is the system’s resonant frequency. The ratio of the imaginary to the real
is the damping ratio, i.e.,

x ¼ e=dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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For the case of a stationary (non-rotating) harmonic point load, the response is solved
to be
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Secondly, the steady state response due to a rotating, harmonic point load is obtained as
well,
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Note that the driving frequencies to the plate, o1;2 ¼ o� nO; are the combinations of
the harmonic frequency and the rotational speed. This is a peculiar feature of a traveling
load.

3. VIBRATIONS OF A PLATE WITH AN SMD SYSTEM

The receptance method is to be applied to join the plate and the SMD system. A detailed
description about receptance method can be found in reference [24]. The connection
between the plate and the SMD is treated as one-junction and the frequency equation of
the joined systems is

a11 þ b11 ¼ 0; ð23Þ

where a11 denotes the direct receptance of the SMD and b11 is that of the plate. The
complex receptance of the SMD system is
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where mL; cL; and kL are the inertia, damping, and stiffness coefficients. The direct
receptance of the plate for two different cases are obtained, respectively, as
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Then the frequency equation for the plate contacting to a stationary SMD system is
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and for the case of a traveling SMD system, the equation is
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In the following, the geometry and material properties for the numerical examples are
given in Table 1. The VEM property is adopted directly from Kerwin’s model



Table 1

Geometry and material properties of the CLD circular plate

Thickness hp ¼ 1mm

Radia inner radius b ¼ 18mm, outer radius a ¼ 60mm
Face layers (aluminum) Ep ¼ Ec ¼ 70Gpa, mp ¼ mc ¼ 0�3; rp ¼ rc ¼ 2710Kg/m3

VEM (polymer) rv ¼ 1340Kg/m3, Gv ¼ ð6; 3ÞMpa

α11
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Figure 2. Graphical method for finding the natural frequencies of the bare plate with SM system.
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[18]. Dimensionless inertia m� and stiffness k� are defined as follows:

m� ¼ mL

M
; k� ¼ kL

a2

Dp
; ð29Þ

where M is the mass of the CLD plate.
The objective of this research is to realize which is the very effective way of imposing

damping on system. The characteristics of the bare plate contacted to an SM system are
used as a base for comparison. The effect of damping once added in the plate via VEM
and once added in SM to form SMD is then discussed. In the following, the parameters m�

and k� are set to be 0�02 and 0�05 and a dimensionless frequency o� is normalized in such a
way that

o� ¼ o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rphpa4

Dp

s
: ð30Þ

The frequencies, said op’s, that satisfy equation (27) are the natural frequencies of the
combined system. They can be solved either numerically or graphically. In a graphical
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method, one seeks for the intersections of the curves a11 and �b11 as illustrated in
Figure 2. From Figure 2 it is seen that the combined system’s natural frequencies oi’s are
smaller than those o0i’s of the plate.

Next, the frequency and damping variations are studied numerically. Since the
treatment thickness of the treated plate is usually limited in engineering applications, the
total thickness of CLD treatment is set to be 20% of the host plate’s in the following
examples. The damping ratio of the dashpot is chosen as 0�1. Figure 3(a) displays the
frequency curves, in which the dash curve represents the bare plate. It is solved via
assuming hv and hc are equal to zero in the CLD plate model. The data is very consistent
with that from the conventional plate theory [25], and it can be a partial check of the
developed theory. As seen from the figure, the other two curves, one with SMD and one
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Figure 3. (a) Variations of frequencies for different plate systems. (b) Variations of damping ratios for
different plate systems.
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with CLD, deviate from the bare plate just slightly. The difference becomes obvious at
higher modes. The damping ratios for two systems are compared in Figure 3(b). It is seen
that damping due to the VEM layer is larger than that due to SMD. This difference is
attributed to the VEM layer being fully covered over the plate. Although the SMD
provides large damping through the dashpot, it acts just on a single point. It shows that
the n ¼ 1 mode has the maximum damping in both cases. Since the damping caused by
CLD is significantly larger than the dashpot, we will focus on the CLD damping treatment
hereafter.

Figure 4 shows the damping ratios of individual modes with three different thickness
ratios hv=hc under the constraint of hv þ hc ¼ 0�2 mm: It is to look into the influence of
damping effect subject to the variation of thickness ratio hv=hc: As seen from the figure, the
increase of VEM layer thickness does not necessarily improve the damping effect. This
result is conceptually realized since the total treatment thickness is restricted and increases
of VEM results in decrease of CL that consequently reduces CL’s rigidity. The results are
consistent with the other investigation [15]. The present results show that hv=hc ¼ 0�3
possesses the largest damping effect among the shown cases.

At last, the responses due to traveling harmonic SM of a driving frequency o and a
rotational speed O applying at the plate is demonstrated. This simulates a disk–head
system. Figure 5 shows the resonant frequency curves as functions of o and O for n ¼ 123
modes. These figures attempt to show how the frequency o and the rotational speed O are
affected by the stiffness k� and the inertia m�: It is discovered that the attachment of k�

affects the plate’s frequencies slightly, but it bifurcates the original frequency at O ¼ 0 into
two. The lower frequency remains that of the plate. The bifurcation is attributed to that
there are two modes, said cos ny and sin ny associated with every frequency, i.e., repeated
frequency, for a symmetric plate. The attachment of SM destroys the symmetry such that
the plate orients itself so that the attaching point becomes a node for one case and an
antinode for the other case (the higher frequency). As to m�; the influence is very
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significant. The figure also shows that the increase of O leads to the system’s natural
frequencies moving farther away of the plate’s.

Figure 6 illustrates in more detail the variation of the frequency and the damping ratios
to the rotational speed for the n ¼ 023 modes. As revealed by Figure 6(a), the traveling
SM system bifurcates each n=0 resonant frequency into two, one is the so-called forward
wave and the other is the backward wave. The (0,0) mode, also called the flapping mode, is
not bifurcated by the rotational speed due to its non-repeated frequency. Figure 6(b)
shows the damping ratios of forward and backward traveling waves. The figure indicates
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Figure 6. (a). Variations of frequencies of the combined system on the rotational speed. (b) Variations of
damping ratios of the combined system on the rotational speed.
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that the damping of the backward wave is higher than that of the forward wave. The
damping of the forward wave decreases with the increase of rotational speed. The damping
of the backward wave increases with the rotational speed at the beginning. It reaches a
maximum at the critical point, where backward wave approaches zero, and then decreases
with the rotational speed.

4. CONCLUSIONS

The vibration and damping characteristics of an annular plate with constrained
layer damping treatment subject to a traveling SMD were investigated. The governing
equations of the CLD-treated plate were first derived via Hamilton’s principle.
These equations were furthered reduced to three only in terms of the host plate’s
displacements. The receptance method followed to joint the stationary CLD plate and the
rotating SMD. From the examples illustrated, the authors have arrived at the following
conclusions. (1) The passive constrained layer damping treatment was a more effective
approach than the dashpot in reducing the response amplitude. The results proved the
damping ratios of the combined system due to viscous damper were lower than that from
the viscoelastic core. (2) There exists a best design on the thickness ratio of the VEM core
to constraining layer to have the maximum damping effects. (3) When the SM was
attached to the plate, the plate’s frequencies bifurcated except for the n ¼ 0 mode. The
attached inertia has very significant influence on the resonance frequency of the plate but
not the stiffness. (4) The damping ratios of the backward waves were higher than those of
the forward waves.
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The bending moments are defined as
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The shear force resultants of VEM are defined as

Qv
rz ¼ Gvhv 1

hv
uc

r þ
hc

2

@uz

@r

� �
� up

r �
hp

2

@uz

@r

� �� �
þ @uz

@r

� �
;

Qv
yz ¼ Gvhv 1

hv
uc
y þ

hc

2

1

r

@uz

@y

� �
� u

p
y �

hp

2

1

r

@uz

@y

� �� �
þ 1

r

@uz

@y

� �
: ðA6Þ

The coefficients of ca; cb; . . . ; cn are defined as
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APPENDIX B: NOMENCLATURE

Di bending ridigity of layers, i ¼ p; v; c
Ei Young’s modulus of layers, i ¼ p; c
Gv complex shear modulus of VEM
hi thickness of layers, i ¼ p; v; c
Kn stiffness matrix of the discretized EOM’s
ki bending strains, i ¼ p; c
kjm; kn elements of stiffness matrix Kn; j;m ¼ 1� 3; equivalent stiffness
Mn mass matrix of the discretized EOM’s
m;mn radial wave number, equivalent transverse mass
Mi

jm bending moments of each layers, j;m ¼ r; y; i ¼ p; v; c
n circumferential wave number
Ni

jm membrane forces of each layer, j;m ¼ r; y; i ¼ p; v; c
Qan;Qbn generalized force vectors
qj generalized force, j ¼ 1� 3
Qi

jz shear force resultants of each layer, j ¼ r; y; i ¼ p; v; c
r co-ordinate in radial direction
Xan;Xbn generalized co-ordinate vectors
t time
ui

j displacements of middle surface of a layer, j ¼ r; y; z; i ¼ p; v; c
z transverse co-ordinate
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Greek letters

amn;cmn;jmn;fmn; zmn; bmn

generalized
co-ordinates
bi

j rotational angle of layers, j ¼ r; y; i ¼ p; v; c
d Dirac delta function
x damping ratio
y circumferential co-ordinate
ri density of layers, i ¼ p; v; c
O load’s rotating speed
o driving frequency
mi The Poisson ratio of layers, i ¼ p; v; c

Superscripts
c constraining layer
p plate
v viscoelastic core
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